Phenylkationen als reaktive Zwischenstufen bei der Solvolyse von Dien-in-yl-triflaten

Walter Holweger und Michael Hanack*

Institut für Organische Chemie der Universität Tübingen, Lehrstuhl für Organische Chemie II, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 10. November 1983

Die Synthese, Trennung und Solvolyse der stereoisomeren 1,4-Dimethyl-1,3-hexadien-5-in-1-yl-triflate 15a - c in verschiedenen Lösungsmitteln wird beschrieben. Dabei reagieren die (*E*)-Isomeren 15a - c im Gegensatz zu den (*Z*)-Isomeren 15a - c bevorzugt über ein intermediäres Phenylkation 16 zu den Phenylethern 17. Über weitere mechanistische Untersuchungen, die für die Bildung der intermediären Phenylkationen 16 sprechen, wird berichtet. Die Entstehungsweise der Benzylderivate 18 wird diskutiert.

Phenyl Cations as Reactive Intermediates in the Solvolysis of Dien-in-yl Triflates

The synthesis, separation, and solvolysis of the stereoisomeric 1,4-dimethyl-1,3-hexadien-5-yn-1-yl triflates 15a - c in various solvents are described. In contrast to the (Z)-isomers 15a - c, the (E)-isomers 15a - c react preferably via an intermediate phenyl cation 16 to give the phenyl ethers 17. Further mechanistic investigations which support the formation of the intermediate phenyl cations 16 are described. The formation of the benzylic derivatives 18 is discussed.

Die Bildung von Phenylkationen 1 bei der Stickstoffabspaltung aus aromatischen Diazoniumsalzen in Lösung wird durch eine Reihe umfangreicher Untersuchungen dokumentiert 1-3.

Berechnungen zur Struktur und Stabilität ergeben für das unsubstituierte Phenylkation 1 einen Singulett-Grundzustand mit verzerrter Geometrie des σ -Gerüsts⁴⁾. Der Stabilitätsunterschied zwischen Singulett- und Triplett-Formen des Phenylkations hängt wesentlich von den Substituenten ab⁴⁾.

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/1010 – 3004 \$ 02.50/0

Phenylkationen sind disubstituierte Carbeniumionen, zu denen auch die intensiv untersuchten Vinylkationen 3 gehören ⁵⁾. Lineare Vinylkationen 3 entstehen als reaktive Zwischenstufen, z. B. bei der Solvolyse von acyclischen Vinyltriflaten $2^{5.6)}$. Bei cyclischen Vinyltriflaten wird die Bildungstendenz der Vinylkationen durch die dabei auftretende Spannung bestimmt: Während bei der Solvolyse von 1-Cyclohexen-1-yl-triflat (4) ein k_c -Prozeß unter Bildung des entsprechenden Vinylkations 5 noch möglich ist⁷⁾, reagiert 1,5-Cyclohexadien-1-yl-triflat (6) auch in Lösungsmitteln niedriger Nucleophilie schon nicht mehr unter Ausbildung eines Vinylkations 7, da 7 im Vergleich zu 5 stärker gespannt ist⁸⁾. Erwartungsgemäß entstehen deshalb auch bei Solvolysereaktionen von Phenyltriflaten 8 keine Phenylkationen 1⁹⁾.

Andererseits gelingt es jedoch, nicht stabilisierte gespannte Vinylkationenzwischenstufen in Ringsystemen durch k_{Δ} -Prozesse, z. B. durch Beteiligung einer Dreifachbindung, zu erzeugen ⁵): Die Solvolyse von 1-Methyl-5-heptin-1-yl-tosylat (**9a**)¹⁰ führt ebenso wie die Solvolyse von 5-Heptin-1-yl-triflat (**9b**)⁷ zu Produkten mit Sechsringstruktur, die sich von den entsprechenden Vinylkationen-Zwischenstufen **10** ableiten.

Bei der Solvolyse von 1-Methyl-1-hepten-5-in-1-yl-triflat (11) konnten wir zeigen¹¹⁾, daß auch Vinylkationen mit Dreifachbindungen unter intermediärer Bildung der gespannten Cyclohexadienylkationen 12 reagieren.

Diese Untersuchungen eröffneten erstmals einen prinzipiell neuen Weg, durch Solvolysereaktionen, z. B. von Dien-in-yl-triflaten 13 unter Beteiligung von Dreifachbindungen Phenylkationen 14 als Zwischenstufen zu erzeugen.

Die Realisierung dieses neuen Weges zur Erzeugung von Phenylkationen erfordert die (Z)-Konfiguration der 3,4-Doppelbindung, sowie die (E)-Konfiguration der 1,2-Doppelbindung im Dienin-yl-triflat 13. Die von uns untersuchte Solvolyse von 1,4-Dimethyl-1,3-heptadien-5-in-1-yltriflat (15b), dessen Stereochemie an der 1,2-Doppelbindung jedoch noch unbekannt war, stellte

das erste Beispiel dar, Phenylkationen auf diesem Weg zu erzeugen^{12a)}. Der Nachweis von (2,2,2-Trifluorethyl)-(2,3,6-trimethylphenyl)-ether (**17b**, $X = CH_2CF_3$) bei der Solvolyse von **15b** in absolutem Trifluorethanol war ein Indiz für die intermediäre Bildung des Phenylkations **16b**^{12a)}. Bei der Solvolyse wurde auch (2,4-Dimethylbenzyl)-(2,2,2-trifluorethyl)-ether (**18b**) erhalten^{12a)}.

Wir berichten jetzt über Solvolysereaktionen der (Z)- und (E)-Triflate 15a - c, um die Frage zu klären, wie die Stereochemie am C-Atom 1 und Substituenten an der Dreifachbindung in 15 die intermediäre Bildung eines Phenylkations beeinflussen.

Dazu mußten zunächst die Isomeren (Z)-15a - c und (E)-15a - c dargestellt werden 12b .

Während bei den Triflaten (Z)-15a, b und (E)-15a, b kein drastischer Einfluß der Substituenten R auf die Cyclisierungsreaktion zu erwarten ist, könnte für ein intermediär entstehendes Phenylkation 16c eine β -Stabilisierung der positiven Ladung durch die Trimethylsilylgruppe erfolgen, wie sie bei di- und trisubstituierten Carbeniumionen diskutiert wird¹³⁾.

Synthesen der Triflate

Die Synthese der Triflate 15 erfolgt ausgehend von den En-in-onen 20, die nach Standardmethoden in die Vinyltriflate 15 überführbar sind^{6,12}.

Die Ketone 20a - c lassen sich in Analogie zu einem von *Nakai* und Mitarbeitern beschriebenen Verfahren¹⁴⁾ durch oxidative Homoallylumlagerung der tertiären Cyclopropylalkinylcarbinole 19a - c mit Pyridinchlorochromat (PCC) in Methylenchlorid gewinnen^{12b)}.

Der stereoselektive Verlauf der Oxidationsreaktion von **19** unter Bildung der (Z)-konfigurierten Doppelbindung in **20** wird durch Ermittlung der ${}^{3}J_{C,H}$ -Kopplungskonstanten zwischen C-8 und dem Proton an C-4 sichergestellt ${}^{12b,15)}$. Wie Tab. 1 zeigt, liegen die ${}^{3}J_{C,H}$ -Werte aller Ketone in dem für eine (Z)-Konfiguration zwischen C-8 und 4-H zu erwartenden Bereich ${}^{15)}$.

Keton	20 a	20 b	20 c		
³ J _{C-8,4-H} (Hz)	6.0	6.9	6.3		

Tab. 1. ${}^{3}J_{C,H}$ -Kopplungskonstanten der Ketone **20a – c**

Nebenprodukte der Pyridinchlorochromatoxidation sind die Homoallylchloride 21 sowie die Alkinylketone 22. Letztere entstehen durch oxidative Spaltung der 4,5-Doppelbindung in 20. Unter den sauren Reaktionsbedingungen der Pyridinchlorochromatoxidation isomerisiert die zentrale Doppelbindung von 20 teilweise (10 - 20%) zu den Ketonen 23. Die Reinigung und Abtrennung der Ketone 20 von den Nebenprodukten 21, 22 und 23 erfolgt durch Umkondensation bei Raumtemperatur im Vakuum. Die Ketone 20a - c sind thermolabile Verbindungen, die sofort weiter umgesetzt werden. Die Überführung in die Dien-in-yl-triflate 15 gelingt mit Trifluormethansulfonsäureanhydrid in Gegenwart einer Pufferbase^{12b}.

Der stereochemische Verlauf der Triflatbildung hängt entscheidend von der eingesetzten Pufferbase ab: 5-Methyl-4-hepten-6-in-2-on (**20a**) reagiert mit Trifluormethansulfonsäureanhydrid (Tf₂O) in Gegenwart von Triethylamin zu einem Gemisch der stereoisomeren Triflate (Z)-15a und (E)-15a, während bei 5-Methyl-4-octen-6-in-2-on (**20b**) unter denselben Reaktionsbedingungen ein stereospezifischer Verlauf unter ausschließlicher Bildung des (Z)-Isomeren beobachtet wird. 5-Methyl-7-(trimethylsilyl)-4hepten-6-in-2-on (**20c**) reagiert mit Tf₂O in Gegenwart von Triethylamin zu einem Gemisch der silylierten und desilylierten Triflate (Z)-15a, c und (E)-15a, c, die sich säulenchromatographisch nicht trennen lassen.

Die Triflatbildung in Gegenwart von 2,6-Lutidin oder 2,6-Di-*tert*-butyl-4-methylpyridin⁶⁾ führt bei den Ketonen **20b** und **20c** zu einem Gemisch der stereoisomeren Tri-

Chem. Ber. 117 (1984)

200

flate (Z/E)-15b und (Z/E)-15c wobei die (Z)-Isomeren überwiegen^{12b)}. Daneben werden auch die strukturisomeren Triflate 25b und 25c erhalten.

Über den unterschiedlichen Verlauf der Triflatbildung bei Verwendung verschiedener Basen haben wir kürzlich ausführlich berichtet¹⁶⁾. Während im Fall sterisch gehinderter, nicht enolisierender Basen wie 2,6-Di-*tert*-butyl-4-methylpyridin mit Tf₂O unter kinetischer Steuerung durch Acylierung der Ketogruppe und Eliminierung die Stereoisomeren (Z/E)-15 sowie 25 entstehen, reagieren Basen wie Triethylamin mit den Ketonen 20 zunächst zu einem Gemisch der (Z/E)-Enolate, die dann durch Tf₂O acyliert werden.

Die Reinigung der Triflate 15a - c erfolgt durch Säulenchromatographie (SiO₂) mit Petrolether/Methylenchlorid-Gemischen $(10:1)^{12b}$, wobei in jedem Fall die Isomeren (Z)-15 als erste Fraktion isoliert werden, gefolgt von einer Mischfraktion der Isomeren (E)-15 und 25. Im Nachlauf sind die Isomeren (E)-15 angereichert; eine quantitative Abtrennung von 25 ist bei den Triflaten (E)-15b, c nicht möglich. Die Trennung der Stereoisomeren gelingt jedoch bei 15a, da hier (mit Triethylamin als Base) nur (Z)-15a und (E)-15a entstehen. Als Verunreinigung von (E)-15a tritt das aus dem Keton 23 gebildete Triflat 24 auf.

Die Konfigurationszuordnung der Triflate (Z/E)-15 erfolgt an (Z)- und (E)-1,4-Dimethyl-1,3-hexadien-5-in-1-yl-triflat (15a) durch Vergleich der 1- $CH_3/2$ -H-Kopplungskonstanten beider Isomeren^{12b)}. Während (Z)-15a eine ${}^{3}J_{C,H}$ -Kopplungskonstante von 4.4 Hz zeigt, wird für (E)-15a 5.6 Hz beobachtet¹⁵⁾. Ein weiterer Unterschied besteht im Aufspaltungsmuster der vinylischen Protonen der Stereoisomeren (Z)- und (E)-15. Während die Signale der vinylischen Protonen in den (Z)-Isomeren ein schmales Multiplett bilden, wird bei den (E)-Isomeren eine deutliche Aufspaltung zu einem zweifachen Dublett beobachtet.

Die Unterschiede im Aufspaltungsbild der vinylischen Protonen des ¹H-NMR-Spektrums stellen ein zusätzliches indirektes Kriterium für die Stereochemie der 1,2-Doppelbindung der Triflate **15** dar.

Solvolysen und Diskussion der Ergebnisse

Die Triflate (Z)- und (E)-15a wurden in absol. Trifluorethanol und in Ethanol, die Triflate (Z/E)-15b,c in absol. Trifluorethanol solvolysiert. Trifluorethanol sollte als Lösungsmittel hoher Ionisierungsstärke und niedriger Nucleophilie die gewünschte Umlagerung besonders begünstigen.

Eine notwendige Bedingung für die Beteiligung der Dreifachbindung und damit für die Bildung eines Phenylkations ist die *anti*-Stellung der Triflatgruppe zur Dreifachbindung in **15** ((*E*)-Isomeres). Die Solvolyseprodukte der (Z/E)-isomeren Triflate **15a** - **c** unterscheiden sich, wie Tab. 2 zeigt, charakteristisch: Die Phenylether **17a**, **b** entstehen über ein intermediäres Phenylkation **16** bevorzugt aus den (*E*)-Triflaten **15a** - **c**. Der Einfluß des Substituenten an der Dreifachbindung auf die Cyclisierungsrate ist dagegen nur gering (Tab. 2).

(Z)-1,4-Dimethyl-1,3-hexadien-5-in-1-yl-triflat [(Z)-15a] reagiert in Trifluorethanol überwiegend unter Eliminierung zu 26a und zum Benzylderivat 18a (X = CH₂CF₃). Von dem über eine Phenylkationen-Zwischenstufe entstehenden Phenylether 17a (X = CH₂CF₃)^{12b} werden nur 1.4% erhalten.

\mathbf{a} : R=H, \mathbf{b} : R=CH₃, \mathbf{c} : R=Si(CH₃)₃

Tab. 2. Solvolysen der Triflate 15a – c; Temp. 120°C, Dauer 5 Tage, 1,3,5-Triisopropylbenzol als innerer Standard

	Lösungsm./ Puffer	Produkte (%) ^{a)}						
Triflat		26	28	17	27	18	29	nicht identifi- ziert
(Z)-15a	TFE ^{b)} /Na ₂ CO ₃	29	_	1.4	-	20	-	10
(E)- 15 a	TFE/Na ₂ CO ₃	20	-	26	2.1	8	_	6
(Z)-15a	EtOH/Na ₂ CO ₃	70	-	-	-	1.0	_	5
(E)-15a ^{c)}	EtOH/Na ₂ CO ₃	19	_	6	_	_	_	-
(Z)-15b ^{d)}	TFE/Na ₂ CO ₃	39	10	9	-	23	_	19
(E)- 15 b	TFE/Na ₂ CO ₃	29	_	30	2.6	5	_	13
(Z)-15c	TFE/Na ₂ CO ₃	31 ^{e)}	_	-	_	12 ^{e)}	_	22
(E)-15c	TFE/Na ₂ CO ₃	22e)	-	17 ^{e)}	2.6 ^{e)}	13e)	-	26
(E)-15a	TFE/Na ₂ CO ₃ , LiBr ^{f)}	_ g)	-	14	-	14	17	-

^{a)} Ermittlung vgl. Vorbemerkung zum experimentellen Teil. – ^{b)} 2,2,2-Trifluorethanol. – ^{c)} 52.4% (*E*)-15a nach Abbruch der Solvolyse zurückerhalten. – ^{d)} Werte aus Literaturstelle^{12a)}. – ^{e)} Ermittelt als 26a, 17a, 27a und 18a. – ^{f)} Genaue Angaben siehe experimenteller Teil. – ^{g)} Wert nicht angegeben, da Peak vom Lösungsmittel verdeckt wird.

Dagegen entsteht bei der Solvolyse des stereoisomeren (E)-15a der Phenylether 17a $(X = CH_2CF_3)$ als Hauptprodukt. Als weiteres Solvolyseprodukt von (E)-15a wird 2,5-Dimethylphenyltriflat (27a) gefunden^{12b)}. Die Isomeren (Z)- und (E)-15b zeigen das gleiche Solvolyseverhalten wie die (Z/E)-Isomeren 15a. Auch hier cyclisiert (E)-1,4-Dimethyl-1,3-heptadien-5-in-1-yl-triflat [(E)-15b] überwiegend zum erwarteten

Phenylether 17b (X = CH₂CF₃) (Tab. 2)^{12b}. (Z)-15b reagiert dagegen in allen verwendeten Lösungsmitteln hauptsächlich unter Eliminierung zu 26b und unter Umlagerung zum 2,4-Dimethylbenzylether 18b (X = CH₂CF₃)^{12b}. Die Produktverteilung der Triflate 15c zeigt (Tab. 2), daß die Trimethylsilylgruppe im Verlauf der Solvolyse abgespalten wird, so daß keine Aussage über einen stabilisierenden Effekt dieser Gruppe auf die β -ständige positive Ladung im Phenylkation 16c möglich ist. Auch bei 15c ist die Stereochemie der 1,2-Doppelbindung ausschlaggebend für den Verlauf der Cyclisierungsreaktion: (E)-15c ergibt wiederum den Phenylether 17a (X = CH₂CF₃) und das En-diin 26a als Hauptprodukte; der Benzylether 18a (X = CH₂CF₃) wird zu 13% erhalten. Wie bei den Solvolysen von (E)-15a, b läßt sich auch hier das umgelagerte 2,5-Dimethylphenyltriflat (27a) nachweisen. (Z)-15c reagiert wie (Z)-15a und (Z)-15b überwiegend unter Eliminierung zu 26a und zu 18a. Die Solvolyse von (Z)-15a und (E)-15a in Ethanol ergibt aufgrund der größeren Nucleophilie des Lösungsmittels die zu erwartende Abnahme an Cyclisierungsprodukten.

Die Entstehung der Phenylether 17 bei den Solvolysen der Triflate 15a - c und ihre bevorzugte Bildung aus den Triflaten (E)-15a - c ist ein entscheidender Hinweis für den Ablauf der Reaktion über ein intermediäres Phenylkation 16a, b. Die unterschiedlichen Cyclisierungsraten für die (Z/E)-Triflate sind in Übereinstimmung mit den Solvolyseergebnissen von (Z)- und (E)-1,2-Dimethyl-1,5-hexadien-1-yl-triflat: das (Z)-Isomere cyclisiert nur zu 27%, das (E)-Isomere dagegen zu 43%¹⁷. Durch die Bildung der umgelagerten Phenyltriflate 27 aus den (E)-Triflaten 15 wird direkt eine Ionenpaar-Rückkehr angezeigt, die nur über ein Phenylkation-Triflatanion-Paar 32 erfolgen kann. Um andere Mechanismen für die Entstehung der Produkte 17 auszuschließen,

wurde die Solvolyse von (E)-15a in Trifluorethanol in Gegenwart von Bromidionen als externem Nucleophil durchgeführt, um das intermediäre Phenylkation 16 direkt abzufangen. Wie Tab. 2 zeigt, entsteht bis zu 17% das erwartete Brom-*p*-xylol 29^{12b)}.

Die Abhängigkeit der Verteilung der Solvolyseprodukte von der Stereochemie der 1,2-Doppelbindung in den Triflaten 15 spricht gegen die primäre Entstehung eines freien Vinylkations 30, das sich dann unter Beteiligung der Dreifachbindung in ein Phenylkation umlagert. Eine plausible Zwischenstufe ist die verbrückte Struktur 31, mit einer Verteilung der positiven Ladung über die C-Atome 1, 5 und 6 wie sie auch bei den Solvolysen von 1-Methyl-5-heptin-1-yl-tosylat (9a) diskutiert wurde^{7,10}. Gegen ein freies Vinylkation 30 mit lokalisierter Ladung an C-1 spricht auch, daß keine gegenseitige Umwandlung der (Z/E)-isomeren Triflate 15a – c ineinander beobachtet wird.

Der unterschiedliche Cyclisierungsverlauf bei der Solvolyse der (Z/E)-isomeren Triflate 15a - c weist auf Unterschiede bei der Bildung der inneren Ionenpaare 31 hin. Bei (E)-15a - c ist eine direkte Wechselwirkung des freiwerdenden Orbitals an C-1 mit der Dreifachbindung möglich, wodurch primär die verbrückte Struktur 31 erhalten wird, die sich praktisch ohne weitere Aktivierungsenergie in ein Phenylkation 32 umlagert. Bei den (Z)-Isomeren 15 wird die Umlagerung einer verbrückten Struktur in ein Phenylkation durch die Wechselwirkung der positiven Teilladungen an C-1, C-5 und C-6 mit der Abgangsgruppe behindert.

Ungeklärt ist noch der Reaktionsweg zu den Benzylderivaten 18: Eigene Untersuchungen am 1,4-Dimethyl-1,3-heptadien-5-in-1-yl-triflat $(15b)^{12a}$ haben gezeigt, daß die benzylische CH₂-Gruppe in 18 stets aus der 1-ständigen Methylgruppe der Triflate 15 entsteht, da von den möglichen strukturisomeren Benzylethern 18b, 33 und 34 immer nur das 2,4-Dimethylbenzylderivat 18b gebildet wird.

Daraus folgt, daß im Laufe der Umlagerung des Triflats **15b** zum Benzylether **18b** keine Änderung der Reihenfolge der Kohlenstoffatome eingetreten ist. Um weiteren Einblick in den Umlagerungsmechanismus zu den Produkten **18** zu bekommen, wurden die Solvolysen der Triflate **15a** und **15b** in deuteriertem Trifluorethanol (CF_3CH_2OD) durchgeführt. Die Ergebnisse der massenspektroskopischen Untersuchungen der Solvolyseprodukte (GC/MS-Kopplung) zeigen charakteristische Unterschiede bei der Deuteriuminkorporation.

nichtdeuteriertes TFE (m/e %)	deuteriertes TFE (50% D-Gehalt <i>m/e</i> %)	nichtdeuteriertes TFE (m/e %)	deuteriertes TFE (50% D-Gehalt <i>m/e</i> %)			
	17 a	176)			
204 (100, M ⁺)	205 (100, M ⁺), 204 (27)	218 (100, M ⁺)				
189 (25)	190 (41)	203 (20)				
121 (49)	122 (62), 121 (48)	135 (92)				
105 (29)	106 (48), 105 (20), 104 (7)	91 (40)				
91 (43)	92 (55), 91 (24)	79 (15)				
77 (34)	78 (38), 77 (24)	77 (10)				
65 (10)		51 (8)				
51 (10)						
	18a		186			
204 (50, M ⁺)	206 (39, M ⁺), 205 (19), 204 (7)	218 (43, M ⁺)	219 (34, M ⁺)			
189 (91)	191 (59)	203 (56)	204 (48)			
105 (100)	107 (100)	119 (100)	120 (100)			
91 (20)	93 (17)	105 (15)	106 (20)			
79 (13)	79 (16), 78 (16)	91 (25)	92 (18)			
77 (20)	77 (9)	77 (15)	78 (10)			
65 (6)	67 (9)	65 (8)	66 (3)			
51 (7)	51 (11)	51 (10)	51 (8)			
26 a		26 b				
104 (100, M ⁺)	105 (100, M ⁺), 104 (81)	118 (100, M ⁺)	118 (100, M ⁺)			
	78 (74)	91 (20)	91 (20)			
	77 (51)	77 (22)	77 (22)			
		65 (12)	65 (12)			
		51 (14)	51 (14)			

Tab. 3. Massenspektren der Solvolyseprodukte von 15a und 15b

Wie aus Tab. 3 hervorgeht, ist der Phenylether 17a bei der Solvolyse der (E/Z)isomeren Triflate 15a in CF₃CH₂OD monodeuteriert. Dagegen entsteht bei der Solvolyse von 15b in CF₃CH₂OD der Phenylether 17b (X = CH₂CF₃) ohne Deuteriuminkorporation. Daraus folgt, daß durch die Einführung eines Substituenten an C-6 der Triflate 15 ein Deuteriumatom weniger eingebaut wird, d. h., daß im Fall des monodeuterierten Produkts 17a das Deuteriumatom die Position 6 im Aromaten 17a einnehmen muß. Der Austausch des aciden Acetylenprotons erfolgt auf der Stufe des Ausgangstriflats 15a, ein vorzeitiger Abbruch der Solvolyse in CF₃CH₂OD zeigt, daß 15a monodeuteriert ist. Tab. 3 zeigt auch, daß der bei der Solvolyse von 15a in CF₃CH₂OD entstehende Benzylether 18a zwei Deuteriumatome enthält, während aus 15b nur ein monodeuteriertes Produkt 18b entsteht. Offensichtlich wird auch bei der Bildung der Benzylether zunächst das acide Acetylenproton des Triflats 15a gegen Deuterium ausgetauscht und anschließend ein zweites Deuteriumatom eingebaut, während die Blockierung der Position 6 im Triflat 15b durch eine Methylgruppe nur zum monodeuterierten Produkt 18b führt.

Das Eliminierungsprodukt **26a** enthält im Fall der Solvolyse des Triflats **15a** nur ein Deuteriumatom, während das homologe En-diin **26b** keine Deuteriuminkorporation zeigt.

Im Verlauf der Solvolyse der Triflate 15 kann deshalb nur an den C-Atomen 5 und 6 ein elektrophiler Angriff des Protons erfolgt sein, da sonst das Eliminierungsprodukt 26a und der Phenylether 17a mehrfach deuteriert bzw. die Produkte 17b und 26b monodeuteriert sein müßten.

Die Deuteriuminkorporation zeigt, daß das Proton an C-5 der Benzylderivate 18 aus dem Lösungsmittel stammt, so daß für die Bildung dieser Produkte ein Additions-Eliminierungsmechanismus wahrscheinlich ist.

Eine direkte Lösungsmitteladdition an die Dreifachbindung der Triflate 15 ist wenig wahrscheinlich, wie die beobachtete Lösungsmittelabhängigkeit der Cyclisierungsrate, die im wenig nucleophilen Trifluorethanol besonders hoch und im stärker nucleophilen Ethanol vergleichsweise gering ist, zeigt. Außerdem muß die Abhängigkeit der Produktbildung von der Stereochemie an C-1 der Triflate 15 erklärt werden. Wie die Lösungsmittelabhängigkeit der Cyclisierungsrate zeigt, muß der Primärschritt in jedem Fall die Heterolyse der O-C-Bindung der Triflat-Abgangsgruppe sein.

Eine Addition primär entstehender Trifluormethansulfonsäure an die Dreifachbindung ist ebenfalls auszuschließen, da ungepufferte Solvolysen nur zu polymeren Produkten führen.

Für die Entstehung der Benzylether 18 schlagen wir deshalb den folgenden Mechanismus vor: Die (Z)-Isomeren 15 solvolysieren zunächst unter Bildung der verbrückten Struktur (Z)-35, in der eine direkte Wechselwirkung der Abgangsgruppe mit den positivierten Kohlenstoffatomen 1, 5 und 6 möglich ist, wobei sich die positive Ladung bevorzugt an C-6 befindet.

Dies geht aus vergleichbaren Untersuchungen der Solvolyse von 5-Heptin-1-yl-triflat hervor⁷⁾. Die Anwesenheit der Triflatgruppe im inneren Ionenpaar (Z)-35 stabilisiert die positive Teilladung an C-6 zusätzlich. Im nächsten Schritt erfolgt die Eliminierung eines Protons aus der 1-ständigen Methylgruppe in (Z)-35, wodurch eine Protonierung bzw. Deuterierung an C-5 durch das Lösungsmittel ermöglicht wird.

Das entstehende Allen-dien-yl-Kation 36 kann entweder in einem k_{Δ} -Prozeß oder elektrocyclisch direkt in das Benzylkation 37 übergehen.

Ein zwingender experimenteller Nachweis der Zwischenstufe 36 steht bisher noch aus.

Wir danken der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung.

Experimenteller Teil

Geräte und Betriebsbedingungen: IR-Spektren: Philips Pye Unicam SP 1000. – ¹H-NMR-Spektren (TMS als innerer Standard): Varian EM 360, Bruker WP 80, Bruker HFX 90. – Massenspektren (70 eV): Varian MAT 711. – GC/MS-Kopplungen: Carlo Erba Fractovap 2900/Varian MAT 112 S. – Analytische Gaschromatographie: Hewlett-Packard HP 5720/A mit FID, 2-m-Stahlsäulen mit 2 mm Innendurchmesser, Trägermaterial: Gas-Chrom Q 80/100, Trennphasen: Silicon SE 30, Carbowax 20 M, jeweils 10% Belegung, Trägergas: Stickstoff 30 ml/min. – Carlo Erba FTV 2150 AC mit Splitsystem nach Grob sowie mit Splitsystem und Septumspülung, FID, Duranglas-WCOT-Kapillarsäulen mit 0.3 mm Innendurchmesser, Länge 15–20 m, Trennphasen: Silicon SE 30, Silicon SE 52, Carbowax 20 M, Trägergas: Stickstoff, 0.3 - 0.4 bar je nach Säulenlänge. Die Auswertung erfolgte mittels des Hewlett-Packard-Integrators HP 3385 A. Alle Werte sind in bezug auf ihre Wiedergabefaktoren unkorrigiert. – Das Einengen von Reaktionslösungen wurde im Rotationsverdampfer vorgenommen.

2-(2-Methylcyclopropyl)-3-butin-2-ol (19 a): 55 g (0.60 mol) Lithiumacetylid-Ethylendiaminkomplex werden unter Stickstoff in 250 ml absol. THF suspendiert und auf 10°C abgekühlt. Dann werden 44 g (0.45 mol) Methyl-(2-methylcyclopropyl)-keton, gelöst in 100 ml absol. THF, langsam zugetropft. Der Ansatz wird unter Stickstoff 12 h stehengelassen. Zur Aufarbeitung wird mit 20 g Eis hydrolysiert und anschließend mit gesättigter Ammoniumchloridlösung versetzt. Die organische Phase wird abgetrennt und die Wasserphase mit Ether (3 × 100 ml) extrahiert. Die gesammelten organischen Phasen werden zweimal mit 100 ml Wasser gewaschen, über Natriumsulfat getrocknet und nach Einengen i. Vak. bei Raumtemp. destilliert. Ausb. 45 g (80%), Sdp. 48 - 50°C/15 Torr (1995 Pa). – IR (Film): 3650 - 3350 (OH), 3320 (Acetylen-CH), 2110 cm⁻¹ (C=C). – ¹H-NMR (CCl₄): $\delta = 0.0 - 1.23$ (m; 4H, Cyclopropyl-H), 1.0 (s; 3H, CH₃), 1.45 (s; 3H, CH₃ - C(OH)), 1.83 - 2.08 (br s; 1H, OH), 2.17 (s; 1H, C=CH). 2-(2-Methylcyclopropyl)-3-pentin-2-ol (19b): Aus 12 g (0.50 mol) Magnesium und 60 g (0.55 mol) Ethylbromid in 500 ml absol. THF wird eine 0.5 M Lösung von Ethylmagnesiumbromid hergestellt. In diese Lösung werden bei 10 °C 20 g (0.50 mol) Propin eingeleitet. Überschüssiges Propin wird in einer Kühlfalle aufgefangen und gegen Ende der Reaktion noch einmal durch die Lösung geleitet. Zu der entstandenen weiß-grauen Suspension tropft man bei 10 °C 40 g (0.41 mol) Methyl-(2-methylcyclopropyl)-keton in 100 ml absol. THF und rührt über Nacht. Aufarbeitung wie bei 19a ergibt 45 g (80%), Sdp. 69 – 75 °C/10 Torr (1313 Pa). – ¹H-NMR (CCl₄): $\delta = 0 - 1.5$ (m; 10H, CH₃, CH₃C(OH), Cyclopropyl-H), 1.8 (s; CH₃C = C), 2.1 – 2.6 (br s; 1 H, OH).

2-(2-Methylcyclopropyl)-4-(trimethylsilyl)-3-butin-2-ol (19c): Aus 3.0 g (0.125 mol) Magnesium und 15 g (0.14 mol) Ethylbromid wird in 100 ml absol. Ether Ethylmagnesiumbromid hergestellt. Dann werden 7.0 g (0.056 mol) 2-(2-Methylcyclopropyl)-3-butin-2-ol (19a) langsam zugetropft. Zu der entstehenden Suspension tropft man 13 g (0.12 mol) Chlortrimethylsilan und läßt das Gemisch über Nacht stehen. Der Ansatz wird zu einer Eis/Kaliumcarbonat-Mischung gegeben und dann mit Ether extrahiert. Die gesammelten Etherphasen werden einmal mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach Eindampfen des Lösungsmittels im Rotationsverdampfer wird das Produkt destilliert. Ausb. 5.0 g (46%), Sdp. 90 °C/10 Torr (1330 Pa). – IR (Film): 3040–2990 (Cyclopropyl-CH), 2190 (C≡C), 850, 765 cm⁻¹ (Si-C). – ¹H-NMR (CDCl₃): $\delta = 0.1$ (s; 9H, Si(CH₃)₃), 0.13–1.2 (m; 7H, CH₃, Cyclopropyl-H), 1.46 (s; 3H, $CH_3 - C(OH)$), 2.1 (br s; 1H, OH). – ¹³C-NMR (CDCl₃): $\delta = 0.02$ (Si(CH₃)₃), 9.5–12.4 (Cyclopropyl-C), 18.15, 18.25 (Cyclopropyl-CH₃), 26.7, 29.7, 30.0, 32.1 (CH₃ - C(OH)), 69.6–69.9 (C – OH), 87.3, 107.2 (C≡C). – MS (70 eV): m/e = 196 (M⁺, fehlt), 181 (23%, M – CH₃), 139 (100%, M – 57), 73 (96%, Si(CH₃)₃).

C11H20OSi (196.4) Ber. C 67.35 H 10.20 Gef. C 67.13 H 10.49

Oxidation der Alkohole 19a - c zu den Ketonen 20a - c. Allgemeine Vorschrift: 0.50 mol (107 g) Pyridinchlorochromat und 1.0 mol Wasser werden in 200 ml Methylenchlorid suspendiert. Zu dieser Suspension gibt man eine Lösung des entsprechenden (2-Methylcyclopropyl)alkinylcarbinols (0.1 mol in 50 ml Methylenchlorid) auf einmal dazu und rührt 2 h bei Raumtemp., wobei sich die Mischung allmählich braun bis schwarz verfärbt. Die erhaltene Suspension wird in 1 l Ether eingegossen, wobei ein orangegelber Niederschlag ausfällt. Die organische Phase wird in einem Scheidetrichter mit Wasser so lange gewaschen, bis das Waschwasser nur noch schwach gelb gefärbt ist. Die erhaltene klare organische Phase wird über Natriumsulfat getrocknet, im Rotationsverdampfer eingeengt und dann das Rohprodukt destilliert. Die Ketone sind spektroskopisch rein und werden in dieser Form sofort weiter umgesetzt. Ausb. ca. 60%.

5-Methyl-4-hepten-6-in-2-on (20a): Sdp. 30 °C/0.4 Torr (53.2 Pa). – IR (Film): 3320 (Acetylen-CH), 2100 (C \equiv C), 1730 (C=O), 1650 – 1630 cm⁻¹ (C=C). – ¹H-NMR (CDCl₃): $\delta = 1.8 - 1.84$ (m, ⁴J = 1.5 Hz; 3H, CH₃C = CH), 2.1 (s; 3H, CH₃C = O), 3.1 (s; 1H, C \equiv CH), 3.35 (d; 2H, CH₂C=O), 5.7 – 5.9 (m, ⁴J = 1.5 Hz; 1H, CH₃C = CH). – ¹³C-NMR (CDCl₃): $\delta = 22.0$ (t, ³J = 6.0 Hz; CH₃C = CH), 28.8 (CH₃C = O), 44.4 (CH₂), 81.6 (C \equiv CH), 85.3 (C \equiv CH), 119.8 (C=C-CH₃), 129.97 (m, ³J = 6.0 Hz; CH₃C = CH), 204.5 (C=O). – MS (70 eV): m/e = 122 (82%, M⁺), 107 (12%, M – CH₃), 77 (100).

5-Methyl-4-octen-6-in-2-on (20 b): Sdp. 35 °C/0.5 Torr (66.5 Pa). – IR (Film): 2220 (C = C), 1715 (C = O), 1670 cm⁻¹ (C = C). – ¹H-NMR (CDCl₃): δ = 1.93 (m; 3H, CH₃C = C), 2.03 (s; 3H, CH₃C = O), 2.15 (s; 3H, CH₃C = C), 3.34 (d; 2H, CH₂C = O), 5.72 (t; 1H, C = CH). – ¹³C-NMR (CDCl₃): δ = 3.0 (CH₃C = C), 22.4 (m, ³J = 6.9 Hz; CH₃C = CH), 28.3 (CH₃C = O), 44.5 (CH₂), 78.0 (C = CH), 89.9 (C = CH), 121.1 (CH₃C = CH), 127.2 (C = CH), 204.5 (C = O).

5-Methyl-7-(trimethylsilyl)-4-hepten-6-in-2-on (20c): Sdp. $39 \,^{\circ}$ C/0.2 Torr (26.6 Pa). – IR (Film): 2140 (C=C), 1730 (C=O), 1700–1670 (C=C), 895, 845 cm⁻¹ (Si-C). – ¹H-NMR (CDCl₃): $\delta = 0.18$ (s; 9H, Si(CH₃)₃), 1.86 (m, ⁴J = 1.5 Hz; 3H, CH₃C=CH), 2.14 (s; 3H, CH₃C=O), 3.35 (d; 2H, CH₂), 5.81 (m, ⁴J = 1.5 Hz; 1H, CH₃C=CH). – ¹³C-NMR (CDCl₃): $\delta = 0.24$ (Si(CH₃)₃), 22.44 (m, ³J = 6.25 Hz; CH₃C=CH), 29.26 (CH₃C=O), 54.2 (CH₂), 98.6 (C=C-Si), 103.54 (C=C-Si), 121.45 (CH₃-C=CH), 129.63 (CH=C-CH₃), 204.94 (C=O). – MS (70 eV): *m/e* = 194 (74‰, M⁺), 179 (39‰, M – CH₃).

C11H18OSi (194.4) Ber. C 68.04 H 9.27 Gef. C 67.92 H 9.09

Synthese der Triflate 15a - c. Allgemeine Vorschrift: A: mit Triethylamin als Pufferbase: 20 mmol Keton 20 werden in 20 ml absol. Methylenchlorid unter Stickstoff gelöst und auf - 78 °C abgekühlt, dann gibt man durch ein Septum 2.5 ml (25 mmol) Triethylamin zu. Anschließend werden 3.4 ml frisch über Phosphorpentoxid destilliertes Trifluormethansulfonsäureanhydrid, gelöst in 10 ml absol. Methylenchlorid, langsam zugetropft. Es wird noch 12 h gerührt und langsam auf Raumtemp. erwärmt, wobei sich der Ansatz tiefrot färbt. Zur Aufarbeitung wird überschüssiges Methylenchlorid im Wasserstrahlvak. abgezogen, der schwarze Rückstand viermal mit je 50 ml Petrolether (30 - 50 °C) extrahiert und die Petroletherextrakte auf 10 ml eingeengt. Das Rohprodukt (ca. 40%) wird durch Säulenchromatographie über Kieselgel mit einer Petrolether (30 - 50 °C)/Methylenchlorid-Mischung (10:1) in die stereoisomeren Triflate 15 getrennt, wobei in allen Fällen die (Z)-Isomeren zuerst isoliert werden.

B: mit 2,6-Lutidin oder 2,6-Di-tert-butyl-4-methylpyridin als Pufferbase: 20 mmol Keton werden zusammen mit 25 mmol 2,6-Lutidin oder 2,6-Di-*tert*-butyl-4-methylpyridin¹⁸⁾ in 20 ml absol. Methylenchlorid auf – 78 °C gekühlt und 3.4 ml Trifluormethansulfonsäureanhydrid zugegeben. Sodann wird weiter verfahren wie unter A beschrieben.

Bei dieser Methode isoliert man zuerst die Triflate (Z)-15a-c, gefolgt von einer Mischfraktion der isomeren Triflate (Z/E)-15 und 25. Im Nachlauf der Mischfraktion sind die (E)-Isomeren 15a-c angereichert.

(Z)-1,4-Dimethyl-1,3-hexadien-5-in-1-yl-triflat [(Z)-15a]: Aus 20a nach Methode A. – IR (Film): 3300 (Acetylen-CH), 2090 (C \equiv C), 1670, 1595 (C = C), 1420 (CF₃), 1245, 1220, 1145 cm⁻¹ (SO₂, SO₂ – O). – ¹H-NMR (CDCl₃): $\delta = 1.95 - 1.97$ (m, ⁴J = 0.8 Hz; 3H, CH₃C = CH), 2.15 (m, ⁴J = 0.6 Hz; 3H, CH₃C(OTf) = CH), 3.32 (s; 1H, C \equiv CH), 6.22–6.4 (m; 2H, = CH – CH =). – ¹³C-NMR (CDCl₃): $\delta = 19.71$ (m, ³J = 1.0 Hz; CH₃C = CH), 23.06 (m, ³J = 4.4 Hz; CH₃C(OTf) = CH), 81.95 (C \equiv CH), 84.37 (C \equiv CH), 118.87 (= CH – C =), 122.46 (C = C – CH₃), 127.98 (C = C(OTf)), 94.64, 110.56, 126.5, 142.43 (q; CF₃). – MS (70 eV): m/e = 254 (63%, M⁺), 58 (100), 51 (24).

C₉H₉F₃O₃S (254.2) Ber. C 42.50 H 3.50 S 12.60 Gef. C 42.77 H 3.73 S 12.41

(E)-1,4-Dimethyl-1,3-hexadien-5-in-1-yl-triflat [(E)-15a]: Aus 20a nach Methode A. – IR (Film): 3300 (Acetylen-CH), 2090 (C=C), 1655, 1590 (C=C), 1420 (CF₃), 1250, 1215, 1145 cm⁻¹ (SO₂, SO₂ – O). – ¹H-NMR (CDCl₃): $\delta = 1.97$ (m, ⁴J = 1.52 Hz; 3H, CH₃C=CH), 2.15 (m, ⁴J = 1.08 Hz; 3H, CH₃C(OTf)=CH), 3.36 (s; 1H, C=CH), 6.13-6.65 (dd; 2H, = CH – CH =). – ¹³C-NMR (CDCl₃): $\delta = 16.81$ (m, ³J = 4.8 Hz; CH₃C=CH), 23.06 (m, ³J = 5.6 Hz, CH₃C(OTf)=CH), 78.43 (C=CH), 85.06 (C=CH), 120.03 (CH₃C=CH –), 123.41 (CH₃C=CH), 148.5 (= C(OTf)), 97.28, 111.45, 125.62, 139.79, (q; CF₃). – MS (70 eV): m/e = 254 (38%), M⁺), 121 (58), 91 (36), 77 (58).

C₉H₉F₃O₃S (254.2) Ber. C 42.50 H 3.50 S 12.60 Gef. C 42.77 H 3.73 S 12.41

(Z)-1,4-Dimethyl-1,3-heptadien-5-in-1-yl-triflat [(Z)-15b]: Aus 20b nach Methode A und B. – IR (Film): 2210 (C=C), 1415 (CF₃), 1245, 1210, 1150 cm⁻¹ (SO₂, SO₂-O). – ¹H-NMR

 $(CDCl_3): \delta = 1.93 (s; 3H, CH_3C = CH), 2.03 (s; 3H, C \equiv C - CH_3), 2.15 (s; 3H, CH_3C(OTf) =), 6.31 (s; 2H, = CH - CH =). - ¹³C-NMR (CDCl_3): \delta = 4.4 (C \equiv C - CH_3), 19.8 (CH_3C = CH), 23.8 (CH_3C(OTf) =), 77.9 (C \equiv C - CH_3), 93.6 (C \equiv C - CH_3), 119.3 (= CH - CH =), 124.3 (CH_3C = CH), 125.1 (CH = C(OTf)), 144.5 (= C(OTf)).$

C10H11F3O3S (268.2) Ber. C 44.7 H 4.1 S 11.9 F 21.6 Gef. C 45.2 H 4.4 S 10.9 F 21.4

(E)-1,4-Dimethyl-1,3-heptadien-5-in-1-yl-triflat [(E)-15b] (im Gemisch mit 25b): Aus 20b nach Methode B. – IR (Film): vgl. (Z)-15b^{12b)}. – ¹H-NMR (CDCl₃): $\delta = 1.92$ (m; 3H, CH₃C=CH), 2.02 (s; 3H, C=C-CH₃), 2.12 (s; 3H, CH₃), 5.97 – 6.61 (m; 2H, =CH-CH=). MS (70 eV): m/e = 268 (18%, M⁺), 135 (48), 105 (14), 91 (47), 69 (15).

(Z)-1,4-Dimethyl-6-(trimethylsilyl)-1,3-hexadien-5-in-1-yl-triflat [(Z)-15c]: Aus **20c** nach Methode B. – IR (Film): 2140 (C=C), 1675, 1590 (C=C), 1420 (CF₃), 1250, 1215, 1145 cm⁻¹ (SO₂, SO₂ – O). – ¹H-NMR (CDCl₃): δ = 0.2 (s; 9H, Si(CH₃)₃), 1.92 (s; 3H, CH₃C = CH), 2.15 (s; 3H, CH₃C(OTf)), 6.32 – 6.35 (m; 2H, = CH – CH =). – MS (70 eV): *m/e* = 326 (29%, M⁺), 204 (5), 193 (95), 178 (41), 163 (32), 149 (7), 135 (9), 119 (51), 107 (7), 97 (28), 73 (100), 53 (6).

 $\begin{array}{c} C_{12}H_{17}F_3O_3SSi \ (326.3) & \mbox{Ber.} \ C \ 44.17 \ H \ 5.21 \ F \ 17.50 \ S \ 9.80 \\ & \mbox{Gef.} \ C \ 43.97 \ H \ 5.64 \ F \ 17.03 \ S \ 9.49 \end{array}$

(E)-1,4-Dimethyl-6-(trimethylsilyl)-1,3-hexadien-5-in-1-yl-triflat [(E)-15c] (im Gemisch mit 25c): Aus 20c nach Methode B. – IR (Film): 2140 (C=C), 1660, 1590 (C=C), 1425 (CF₃), 1255, 1215, 1145 cm⁻¹ (SO₂, SO₂ – O). – ¹H-NMR (CDCl₃): $\delta = 0.2$ (s; 9H, Si(CH₃)₃), 1.95 (m; 3H, CH₃C =), 2.2 (s; 3H, CH₃C(OTf) =), 6.7 – 7.1 (m; 2H, = CH – CH =).

4-Methyl-1-methylen-3-hepten-5-in-1-yl-triflat (25b) [im Gemisch mit (E)-15b]: Aus 20b nach Methode B. $-{}^{1}$ H-NMR (CCl₄): $\delta = 2.0$ (s; 3H, HC = CH₃), 2.14 (s; 3H, C = C - CH₃), 3.1 (d; 2H, CH₂C(OTf) =), 4.9 (m; 2H, CH₂=C(OTf)), 5.4 (t; 1H, = CH - CH₂). - MS (70 eV): m/e = 268 (17%, M⁺), 135 (48), 105 (12), 91 (42), 79 (12).

4-Methyl-1-methylen-6-(trimethylsilyl)-3-hexen-5-in-1-yl-triflat (25 c) [im Gemisch mit (E)-15 c]: ¹H-NMR (CDCl₃): $\delta = 0.2$ (s; 9H, Si(CH₃)₃), 1.9 (m; 3H, CH₃C = CH), 3.4 (d; 2H, CH₂C(OTi) =), 5.5 (m; 2H, CH₂ = C(OTi)), 6.2 (m; 1H, = CH - CH₂).

Synthesen der Vergleichspräparate

(2,5-Dimethylphenyl)-(2,2,2-trifluorethyl)-ether (17a, $X = CH_2CF_3$): 9.8 g (0.10 mol) konz. Schwefelsäure, in 20 ml Wasser gelöst, läßt man bei 5 °C zu 5.5 g (50 mmol) 2,5-Dimethylanilin zufließen und tropft dann bei Eisbadtemp. eine Lösung von 3.56 g (0.05 mol) Natriumnitrit in 20 ml Wasser langsam zu, wobei die Suspension homogen wird. Die erhaltene Lösung läßt man aus einem gekühlten Tropftrichter so langsam zu 50 ml siedendem 2,2,2-Trifluorethanol tropfen, daß die Stickstoffentwicklung nicht zu stark wird.

Nach Beendigung der Reaktion gießt man in 300 ml Eiswasser und extrahiert zweimal mit 100 ml Petrolether (30 - 50 °C). Die Petroletherphase wird zweimal mit 100 ml Wasser gewaschen und über Natriumsulfat getrocknet. Nach dem Eindampfen des Lösungsmittels wird das Rohprodukt über eine Mikrokolonne destilliert. Das Destillat wird anschließend durch Säulenchromatographie (Kieselgel, Petrolether 30 - 50 °C) gereinigt. Man erhält eine farblose Flüssigkeit. – IR (Film): 1630–1350 (Aromat), 1290 (C-F). – ¹H-NMR (CDCl₃): $\delta = 2.29$ (s; 3H, CH₃-Aromat), 2.38 (s; 3H, CH₃-Aromat), 4.23–4.50 (q; 2H, CH₂CF₃), 6.66–7.16 (m; 3H, Aromaten-H). – ¹³C-NMR (CDCl₃): $\delta = 15.16$ (CH₃-Aromat), 20.56 (CH₃-Aromat), 63.63, 65.39, 67.15, 68.92 (q; CH₂CF₃), 102.94, 116.76, 130.59, 144.41 (q; CF₃), 113.01, 122.97, 124.50, 131.0, 136.85, 155.74 (Aromaten-C). – MS (70 eV): m/e = 204 (100%, M⁺), 189 (25%, M⁺ – CH₃), 121 (49), 105 (29), 91 (43), 77 (34), 65 (10), 51 (10).

C10H11F3O (204.2) Ber. C 58.80 H 5.40 F 27.9 Gef. C 58.96 H 5.30 F 24.5

(4-Methylbenzyl)-(2,2,2-trifluorethyl)-ether (18a, $X = CH_2CF_3$): 2.3 g (0.10 mol) Natrium werden in 50 ml 2,2,2-Trifluorethanol gelöst. Dann gibt man 10 g (70 mol) 4-Methylbenzylchlorid hinzu und kocht 2 h unter Rückfluß. Anschließend wird der Ansatz zu 100 ml Wasser gegeben und dreimal mit je 50 ml Ether extrahiert. Die gesammelten Etherextrakte werden zweimal mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach dem Eindampfen des Lösungsmittels wird destilliert. Man erhält eine farblose Flüssigkeit. Sdp. 94 °C/15 Torr (1995 Pa). – IR (Film): 1530 (Aromat), 1285 (C-F), 1170 cm⁻¹ (C-O). – ¹H-NMR (CDCl₃): $\delta = 2.5$ (s; 3 H, CH₃-Aromat), 3.92 (q; 2H, ³J = 9 Hz; CH₂CF₃), 4.74 (s; 2H, CH₂-Aromat), 7.26 – 7.46 (m; 4H, Aromaten-H). – ¹³C-NMR (CDCl₃): $\delta = 20.84$ (CH₃-Aromat), 64.59, 66.08, 67.64, 69.14, (q; CH₂CF₃), 73.88 (CH₂), 105.73, 118.08, 130.43, 142.78 (q; CF₃), 127.96, 129.26, 133.61, 138.03 (Aromaten-C). – MS (70 eV): m/e = 204 (50%, M⁺), 189 (91), 105 (100), 91 (20), 77 (20), 65 (6), 51 (7).

C10H11F3O (204.2) Ber. C 58.80 H 5.40 Gef. C 58.70 H 5.24

2,5-Dimethylphenyl-triflat (27 a): Zu einer Lösung von 12.2 g (0.10 mol) 2,5-Dimethylphenol in 100 ml absol. Methylenchlorid gibt man 10.1 g (0.10 mol) absol. Triethylamin und läßt in diese Lösung 28.2 g (16.8 ml, 0.10 mol) Trifluormethansulfonsäureanhydrid in 50 ml absol. Methylenchlorid eintropfen. Man rührt 3 h bei Raumtemp. und gießt dann unter Rühren den Ansatz in 200 ml Petrolether (30 – 50 °C), der mit 100 ml Eiswasser unterschichtet ist. Die organische Phase wird abgetrennt, mit 20 ml 10proz. Salzsäure und anschließend mit Wasser gewaschen, über Natriumsulfat getrocknet und anschließend eingedampft.

Ein Teil des Rückstandes wird zur Reinigung mit Petrolether (30 – 50 °C) über Kieselgel chromatographiert. Man isoliert klares flüssiges Produkt. – IR (Film): 1635, 1520 (Aromaten), 1430 (S=O), 1225 (C-F), 1080, 845 cm⁻¹ (COSO₂). – ¹H-NMR (CDCl₃): δ = 2.34 (s, 6H, CH₃-Aromat), 7.1 – 7.2 (m, 3H, Aromaten-H). – ¹³C-NMR (CDCl₃): δ = 15.58 (CH₃-Aromat), 20.45 (CH₃-Aromat), 98.35, 111.70, 125.81, 139.57 (q; CF₃), 121.59, 127.44, 128.93, 131.73, 137.97, 148.37 (Aromaten-C). – MS (70 eV): m/e = 254 (62%, M⁺), 175 (6), 143 (1), 121 (100%, M – SO₂CF₃), 105 (6), 91 (32), 77 (38), 69 (11), 65 (10), 51 (7).

C₉H₉F₃O₃S (254.2) Ber. C 42.50 H 3.50 S 12.60 Gef. C 42.52 H 3.68 S 12.74

(2,5-Dimethylphenyl)-ethyl-ether (17 a, X = CH₂CH₃): Zu 2.3 g (0.10 mol) Natrium, in 100 ml absol. Ethanol gelöst, gibt man eine Lösung von 12.2 g (0.10 mol) 2,5-Dimethylphenol in 20 mol absol. Ethanol. Nach Zusatz von 18.6 g (0.12 mol) Diethylsulfat wird 3 h unter Rückfluß erhitzt. Zur Aufarbeitung destilliert man etwa 60 ml Ethanol vorsichtig ab (Temperaturkontrolle). Der Rückstand wird mit 300 ml Wasser versetzt und viermal mit je 50 ml Petrolether (30 – 50 °C) extrahiert. Die Petroletherextrakte werden einmal mit 50proz. Natronlauge, dann zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und anschließend eingeengt. Die Destillation ergibt eine farblose Flüssigkeit. Sdp. 90 °C/10 Torr (1330 Pa). – IR (Film): 1620, 1590, 1520, 1510 (Aromaten), 1270 cm⁻¹ (C-O-C). – ¹H-NMR (CDCl₃): δ = 2.29, 2.40 (s; 6H, CH₃-Aromat), 4.06 – 4.21 (q; 2H, CH₂O), 6.71 – 7.24 (m; 3H, Aromaten-H). – ¹³C-NMR (CDCl₃): δ = 14.82 (CH₃CH₂), 15.5 (CH₃-Aromat), 21.19 (CH₃-Aromat), 63.35 (OCH₂), 112.16, 120.7, 123.6, 130.3, 136.28, 157.05 (Aromaten-C). – MS (70 eV): *m/e* = 150 (81%, M⁺), 122 (100), 104 (6), ⁷⁷ (20). C₁₀H₁₄O (150.2) Ber. C 80.00 H 9.30 Gef. C 80.60 H 9.57

Ethyl-(4-methylbenzyl)-ether (18a, $X = CH_2CH_3$): Die Lösung von 2.3 g (0.10 mol) Natrium in 50 ml absol. Ethanol wird mit 14 g (0.1 mol) 4-Methylbenzylchlorid 2 h unter Rückfluß erhitzt. Die Reaktionsmischung gießt man in 300 ml Wasser, extrahiert viermal mit jeweils 50 ml Petrolether (30 – 50 °C), wäscht dreimal mit je 50 ml Wasser und trocknet über Natriumsulfat. Nach dem Abziehen des Lösungsmittels wird der Rückstand destilliert. Sdp. 85 – 87 °C/10 Torr (1330 Pa). – IR (Film): 1650 – 1580 (Aromaten), 1110 (C – O – C), 810 cm⁻¹ (Aromaten). –

3018

¹H-NMR (CDCl₃): $\delta = 1.2$ (t; 3H, CH₃CH₂), 2.35 (s; 3H, CH₃-Aromat), 3.41 – 3.61 (q; 2H, OCH₂), 4.47 (s; 2H, CH₂-Aromat), 7.09 – 7.30 (m; 4H, Aromaten-H). – ¹³C-NMR (CDCl₃): $\delta = 14.9$ (CH₃CH₂), 20.8 (CH₃-Aromat), 65.10 (OCH₂), 72.2 (CH₂-Aromat), 127.4, 135.4, 136.7 (Aromaten-C). – MS (70 eV): m/e = 150 (81%, M⁺), 122 (100), 105 (6), 77 (20).

2,3,6-Trimethylphenyl-triflat (27b): Darstellung wie bei 27a aus 13.6 g (0.10 mol) 2,3,6-Trimethylphenol und 28.8 g (0.10 mol) Trifluormethansulfonsäureanhydrid. Farblose Flüssigkeit. – IR (Film): 1500 (Aromaten), 1420 (S = O), 1225 (C - F); 1050 cm⁻¹ ($COSO_2$). – ¹H-NMR ($CDCl_3$): $\delta = 2.32$ (s; 6H, CH₃-Aromat), 2.40 (s; 3H, CH₃-Aromat), 7.07 – 7.26 (m; 2H, Aromaten-H). – ¹³C-NMR ($CDCl_3$): $\delta = 13.63$, 16.80, 19.82 (CH₃-Aromat), 95.55, 111.0, 126.82, 142.09 (q; CF₃), 128.89, 128.892, 129.290, 129.972, 137.134, 146.97 (Aromaten-C). – MS (70 eV): m/e = 268 (16%, M⁺), 135 (100), 105 (9), 91 (46), 79 (17), 69 (12), 53 (5).

C10H11F3O3S (268.3) Ber. C 47.7 H 4.1 S 11.9 Gef. C 46.0 H 4.6 S 12.3

Solvolysen und Identifizierung der Produkte

Zur Solvolyse werden 10 μ l Triflat in 1 ml Lösungsmittel gelöst und mit 100 mg getrocknetem Natriumcarbonat in einer Ampulle mit Magnetkern abgeschmolzen. Dem Solvolyseansatz werden 5 μ l 1,3,5-Triisopropylbenzol als innerer Standard zugefügt.

Die prozentuale Zusammensetzung des Produktgemisches im Gaschromatogramm wird mit einem Integrator (Hewlett-Packard HP 3385 A) ermittelt. Alle Werte sind unkorrigiert in bezug auf ihre Wiedergabefaktoren. Die Solvolysedauer liegt zwischen vier und zehn Tagen. Die Solvolysetemperatur beträgt 120°C.

Zur Aufklärung der Produkte wird die Solvolyselösung direkt auf Glas-Kapillarsäulen unter Verwendung von Trennphasen unterschiedlicher Polarität analysiert. Die Identifizierung der Produkte erfolgt durch Mischspritzen mit authentischen Vergleichspräparaten und durch GC/MS-Kopplung. In Einzelfällen werden die Solvolyseprodukte durch präparative Dünnschichchromatographie (Kieselgel, Petrolether 30-50 °C) oder präparative Gaschromatographie getrennt und über ihre ¹H-NMR-Spektren identifiziert.

In einzelnen Fällen wurden die Solvolysen aufgearbeitet: Die Solvolyselösung (1 - 5 ml) wird in der 10fachen Menge Wasser gelöst und mehrmals mit je 10 - 20 ml Petrolether $(30 - 50 \degree \text{C})$ extrahiert. Die Petroletherextrakte werden zweimal mit je 10 ml Wasser gewaschen, über Natriumsulfat getrocknet und auf etwa 10 ml eingeengt. Danach werden die Produkte entweder durch präparative Gaschromatographie oder durch präparative Dünnschichtchromatographie aufgetrennt.

Solvolysen in deuteriertem 2,2,2-Trifluorethanol

Darstellung von CF_3CH_2OD : 2.3 g (0.10 mol) Natrium werden in 50 ml absol. 2,2,2-Trifluorethanol (TFE) gelöst. Überschüssiges TFE wird im Stickstoffstrom abdestilliert, wobei eine weiße Masse ausfällt. Durch ein Septum gibt man 2.0 g (0.10 mol) D₂O langsam zu. Anschließend wird destilliert, wobei die Fraktion bei 77 °C aufgefangen wird. Das so erhaltene Produkt wird auf dieselbe Art noch einmal deuteriert. Deuterierungsgrad (massenspektroskopisch) etwa 50%.

Durchführung der Solvolysen

A (in deuteriertem TFE, Deuterierungsgrad 50%): 10 μ l Triflat werden in 1 ml deuteriertem TFE zusammen mit 100 mg getrocknetem Natriumcarbonat gelöst und in einer Glasampulle mit Magnetrührer abgeschmolzen. Die Mischung wird vier bis fünf Tage bei 120 °C solvolysiert und anschließend direkt gaschromatographisch analysiert. Durch GC/MS-Kopplung und Retentionszeitvergleich mit authentischen, nichtdeuterierten Vergleichsubstanzen wird die Zuordnung getroffen. Der Vergleich der Massenspektren der nichtdeuterierten Probe und des Solvolyseproduktes unter Berücksichtigung des Deuterierungsgrades von TFE ermöglicht die Bestimmung des Deuterierungsgrades der untersuchten Probe.

B (in zu 50% deuteriertem TFE unter Zusatz von D_2O): 10 µl Triflat werden in 0.5 ml zu 50% deuteriertem TFE gelöst und 0.5 ml D_2O zugesetzt. Anschließend wird wie unter A beschrieben solvolysiert. Zur Aufarbeitung wird mit 10 ml Wasser verdünnt und dreimal mit Ether (5 ml) extrahiert. Die Etherextrakte werden über Natriumsulfat getrocknet und dann auf 1 ml eingeengt. Anschließend wird die Zusammensetzung wie unter A beschrieben ermittelt.

Solvolysen unter Zusatz von Lithiumbromid: 0.5 ml einer gesättigten wäßr. Lösung von Lithiumbromid werden mit 0.5 ml TFE versetzt und durch Zugabe von peroxidfreiem 1,4-Dioxan homogenisiert, wobei teilweise Lithiumbromid ausfällt, das jedoch mit wenig Wasser wieder aufgelöst werden kann. 1 ml dieser Lösung wird mit 10 μ l Triflat versetzt und unter Zusatz von 50 mg Na:riumcarbonat vier bis fünf Tage bei 120 °C in einer abgeschmolzenen Ampulle mit Magnet-rührer solvolysiert. Zur Aufarbeitung gießt man die Solvolyselösung in 10 ml Wasser, extrahiert dreimal mit je 5 ml Ether, trocknet die Etherphasen über Natriumsulfat und engt dann auf 1-2 ml ein. Die erhaltene Lösung kann direkt durch Gaschromatographie analysiert werden.

- ¹⁾ H. Zollinger, Angew. Chem. 90, 151 (1978); Angew. Chem., Int. Ed. Engl. 17, 141 (1978).
- ²⁾ ^{2a)} C. G. Swain, J. E. Sheats und K. G. Harbison, J. Am. Chem. Soc. 97, 783, 796 (1975). –
 ^{2b)} C. G. Swain, J. E. Sheats, K. G. Harbison und D. G. Gorenstein, J. Am. Chem. Soc. 97, 791 (1975). –
 ^{2c)} C. G. Swain und R. J. Rogers, J. Am. Chem. Soc. 97, 799 (1975).
- ³⁾ E. S. Lewis, L. D. Hartung und B. M. McKay, J. Am. Chem. Soc. **91**, 419 (1969), und frühere Arbeiten.
- ^{4) 43)} J. D. Dill, P. v. R. Schleyer, J. S. Binkley, R. Seeger, J. A. Pople und E. Haselbach, J. Am. Chem. Soc. 98, 5428 (1976). ^{4b)} J. D. Dill, P. v. R. Schleyer und J. A. Pople, J. Am. Chem. Soc. 99, 1 (1977).
- ⁵⁾ P. J. Stang, Z. Rappoport, M. Hanack und L. R. Subramanian, Vinyl Cations, Academic Press, New York 1979.
- ⁶⁾ P. J. Stang, M. Hanack und L. R. Subramanian, Synthesis 1982, 85.
- ⁷⁾ M. Hanack, K.-A. Fuchs und C. J. Collins, J. Am. Chem. Soc. 105, 4008 (1983).
- ⁸⁾ M. Hanack, H. Bentz, R. Märkl und L. R. Subramanian, Liebigs Ann. Chem. 1978, 1894.
- ⁹⁾ L. R. Subramanian, M. Hanack, L. W. Chang, M. A. Imhoff, P. v. R. Schleyer, F. Effenberger, W. Kurtz, P. J. Stang und T. E. Dueber, J. Org. Chem. 41, 4099 (1976).
- ¹⁰⁾ P. E. Peterson und R. J. Kamat, J. Am. Chem. Soc. 88, 3152 (1966).
- ¹¹⁾ M. Hanack und M. J. Chandy, Tetrahedron Lett. 1975, 4515.
- ¹²⁾ ^{12a)} M. Hanack und U. Michel, Angew. Chem. **91**, 928 (1979); Angew. Chem., Int. Ed. Engl.
 18, 870 (1979). ^{12b)} M. Hanack und W. Holweger, J. Chem. Soc., Chem. Commun. **1981**, 713.
- ¹³⁾ ^{13a} A. R. Basindale, C. E. Eaborn, D. R. M. Walton und D. J. Young, J. Organomet. Chem.
 20, 49 (1969). ^{13b)} M. A. Cook, C. E. Eaborn und D. R. M. Walton, J. Organomet. Chem.
 24, 293 (1970). ^{13c)} M. A. Cook, C. E. Eaborn und D. R. M. Walton, J. Organomet. Chem.
 29, 389 (1971). ^{13d)} W. S. Johnson, T. M. Yarnell, R. F. Myers und D. R. Morton, Tetrahedron Lett. 1978, 2549.
- 14) E. Wada, M. Okawara und T. Nakai, J. Org. Chem. 44, 2952 (1979).
- ¹⁵⁾ U. Vogeli und W. v. Philipsborn, Org. Magn. Reson. 7, 617 (1975).
- 16) M. Hanack und J. Haßdenteufel, Chem. Ber. 115, 764 (1982).
- ¹⁷⁾ T. C. Clarke und R. G. Bergmann, J. Am. Chem. Soc. 96, 7934 (1974).
- ¹⁸⁾ A. G. Anderson und P. J. Stang, J. Org. Chem. 41, 3034 (1976).

[361/83]